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ABSTRACT

For a truss a fully stressed state is reached when all its members are utilized to their full strength

capacity. Historically, engineers considered such a design optimum. But recently this optimality has been

questioned, especially since the weight of the structure is not explicitly used in fully stressed design

calculations. This paper examines optimality of the fully stressed design (FSD) with analytical and graphical

illustrations. Solutions for a set of examples obtained by using the FSD method and optimization methods

numerically confirm the optimality of the FSD. The FSD, which can be obtained with a small amount of

calculation, can be extended to displacement constraints and to nontruss-type structures.

INTRODUCTION

Researchers are baffled by a conspicuous attribute of the fully stressed design: the good numerical

results obtainable with the FSD, even when the merit function, or the weight of the structure, is not used in

such calculations. Optimization proponents think that the FSD need not represent the optimum solution since

the good FSD results are considered special cases. Practicing engineers believe that when all the members of

a truss (or structure) are utilized to their full strength capacity the design can no longer be improved. They,

however, cannot offer a mathematical proof supporting the optimality of the FSD. This dilemma has persisted

since the sixties.1-6 In this paper an attempt is made to alleviate the confusion. The optimality of the FSD is

examined in four sections: the problem is defined; optimality is discussed; numerical examples follow; and

discussions and conclusions are presented.
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TRUSS DESIGN PROBLEM

Consider an n-bar truss with n member areas as design variables subjected to q load conditions. A

fully stressed state (of FSD) is reached when each member’s stress equals allowable strength σ0. This design

can be cast as the following mathematical programming problem: Find n variables (Ai for i = 1, 2, ..., n) to

minimize weight W Ai

i

i i=
=
∑ρ

1

n

l  subjected to nq stress constraints

g i nqi
i

0
= − =( )1 1 2 1

σ
σ

, , ..., ( )

The optimum solution—variables (Ai
opt  for i = 1, 2, ..., n), minimum weight (Wopt), and active

constraints (g j
act  = 0, j = 1, 2, ..., n)—can be obtained by using one of several optimization methods.7,8 In

optimization methods, both the weight function and the constraints participate. In the FSD, only the constraints

are solved iteratively to obtain the design variables, without any reference to weight. The FSD method weight

(Wfsd) is back-calculated from the areas. That the FSD need not be optimum (i.e., A Ai
opt

i
opt≠ for i n= 1 2, ,..., ,

and Wfsd   ñ Wopt) is a popular misconception.

OPTIMALITY OF THE FULLY STRESSED DESIGN 

The Lagrangian functional obtained by adjoining the active constraints to the weight function is used

to examine the optimality of the FSD.

  

L({ }, { }) ({ }) ({ }) ( )*A W A Aigiλ λ= + ∑
active set

2
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where (*) indicates the active constraints and {λ} are the multipliers. The variables and the multipliers can be

obtained from the stationary condition of the Lagrangian functional with resepct to member areas {A} and

multipliers as

∇ { }( ) + ∇ { }( ) = { }∑W A g Ai i
*

active set

λ 0 3( )

g A gi i
*{ }( ) = { } ( )0 4within the active set ( )

Iterative solution to Eqs. (3) and (4) yields the optimum results.

The optimality of the fully stressed design is considered by examining the relation that exists between

the design variables and the active constraints in the following three cases.

Case 1: the number of active constraints exceeds the number of design variables

Case 2: the number of active constraints equals the number of design variables

Case 3: the number of active constraints is fewer than the number of design variables

A three-bar truss subjected to two load conditions (see Fig. 1(a)), with three design variables, six stress

constraints, and weight as the merit function, is used for illustration of the three cases. 

Case 1: Number of Active Constraints Exceeds the Number of Design Variables 

Geometrical solution.—Consider an optimum solution with n variables and (n + v) active constraints.

The optimal solution is at the intersection of any n out of the (n + v) active constraints. The remaining v are

follower constraints passing through the optimal point. For the truss with three design variables, assume an

optimal design with four active constraints, g1, g3, g5, and g6 (see Fig. 1(b)). Three constraints (g3, g5, and g6)

are sufficient to establish the optimal point. The follower constraint (g1) can be neglected without any

consequence. From a geometrical consideration, the inclusion of a maximum of n active constraints is

sufficient to establish the optimal design. The weight function is not essential when v > 0 or the number of

active constraints exceeds the number of design variables.
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Analytical solution.—The (2n+v) unknowns (being n design variables and (n + v) multipliers) can be

determined as the solution to Eqs. (3) and (4). A simple strategy, however,  is to solve for the n design

variables from any n of (n + v) constraint functions given by Eq. (4), which does not contain the Lagragian

multipliers. Values for the multipliers and the weight function can be back-calculated. In other words, when the

number of active constraints exceeds the number of design variables, the optimum can be obtained from the

solution of a set of n active constraints. This procedure is adopted in the stress-ratio-based fully stressed design

method. The solution thus obtained is optimum because it satisfies Eqs. (3) and (4).

Case 2: Number of Active Constraints Equals the Number of Design Variables 

An optimal solution with n variables and n active constraints, by definition, represents a fully stressed

design. The stationary condition of the Lagrangian (Eqs. (3) and (4)) represents 2n equations in 2n unknowns.

The uncoupled Eq. (4), being n constraint equations, can be solved for the n design variables. The n multipliers

and optimum weight can be back-calculated from the design variables. For the three-bar truss, the solution of

three constraints will yield the design variables. The optimum weight and the multipliers can be back-

calculated from Eqs. (1) and (3) respectively.

When the number of active constraints equals or exceeds the number of design variables, the solution

of the active constraints (i.e., Eq. (4)) provides the design variables. The design thus obtained is both fully

stressed and optimum.

Case 3: Fewer Active Constraints Than Design Variables 

An optimum solution with fewer active constraints than design variables is not a fully stressed design.

For the three-bar truss, assume two active constraints (g1 and g2) given by Eq. (4). The two constraint

equations are expressed in terms of three unknown design variables. Although Eq. (4) is independent of

Lagrangian multipliers, it does not have sufficient quantity for a solution of the three design variables. Thus,

both Eqs. (3) and (4), which are coupled in variables, multipliers, and weight gradient, must be solved

simultaneously to generate the optimum solution. The gradient of the weight function and the multipliers are
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required to calculate the design variables. In other words, only when the number of active constraints is fewer

than the number of design variables do both the constraints and the weight function participate. Mathematical

programming methods address this situation in particular. Practical truss design, however, more frequently falls

under Cases 1 and 2. Academic truss examples satisfying the Case 3 condition can be easily obtained by

changing the strength, Young’s modulus, and certain other geometrical parameters.9

Design of a Truss Under a Single Load Condition

For an indeterminate truss under a single load condition, a full stress state may not be achievable

because of the compatibility condition.5,7,10 Take, for example, an n-bar truss with r redundant members. If its

FSD is attempted without restricting the lower bound for the member areas, then the design will degenerate to

a determinate structure that, of course, will be fully stressed and optimum. If, however, a minimum bound Amin

is specified for member areas, the resulting design will have (n - r) fully stressed members with (n - r) active

stress constraints and r member areas that reach the minimum bounds of Amin. These properties, from an

analytical viewpoint, become equivalent to n active constraints consisting of (n - r) stress constraints and r

lower bound side constraints. Since there are n design variables, this example falls under Case 2. In other

words, the fully stressed design of a truss under a single load also represents the optimum design.

A fully stressed design state can be defined in terms of two indices, Indexstress and 

Indexall :

Index
number of active stress constra s

number of independent design iables
stress = ( )

( )
int

var

Index
number of active stress constra s number of active bounds

number of independent design iables
all =

+( )
( )

int

var

Index imum Index Indexstress all= ( )max ,

For analytical purposes, a fully stressed state is reached when the Index ≥ 1.
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NUMERICAL EXAMPLES

The examples are separated into a first example and a group of problems. The first example, with

several subcases, examines the role of the weight function when the number of active constraints exceeds or

equals the number of design variables (or Cases 1 and 2). The second group of examples compares stress-ratio-

based FSD’s with their optimum designs obtained using design optimization methods. Two optimizers, SUMT

(Sequential Unconstrained Minimization Technique) and IMSL (i.e., the Sequence of Quadratic Programming

technique of IMSL) are used to solve examples in group 2. The figures and descriptions for the examples are

not given here but can be found in Refs. 7 and 8. All the examples were solved in a controlled environment on

the NASA Lewis Cray Y–MP computer.

Example 1

A three-bar truss (see Fig.1(a)) is used to illustrate that the weight function does not influence the

optimum design when the number of active constraints equal or exceed the number of design variables. The

truss is subjected to two load conditions and has a total of six stress constraints, three per load condition. The

optimum solution for an aluminum truss with equal weight densities of 0.1 lb/in.3 for its three bars was

obtained by using several optimization algorithms. The optimum solution for the problem consists of optimum

weight Wopt = 133 lb; design variable Aopt = (3.29, 3.99, 3.32) in.2; and four active stress constraints (g1, g3,

g5, and g6).

Fully stressed design.—The stress-ratio-based FSD produced a solution that is identical to the

optimum design obtained by using optimization methods. The weight coefficients were changed over a wide

range, from 0.1 lb/in.3 for aluminum to 300 lb/in.3 for a fictitious material. The design and active constraints

obtained by FSD remained the same since the weight does not participate in the calculation. The FSD weight,

however, was back-calculated and is shown in table 1.

SUMT optimizer.—Solutions for five different sets for weights of the bars were attempted by SUMT

(see table 1). The SUMT optimizer converged to the optimum solution for the first four cases, producing the 
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correct optimum weight and an identical set of four active constraints. For the fifth case, SUMT converged to

an eccentric local optimum design with two, instead of four, active constraints.

IMSL optimizer.—This optimizer produced correct solutions for the last four cases. For the first case,

no active constraints were produced and the IMSL solution was unsatisfactory. 

Table 1 also shows solutions obtained with other optimization methods. The FSD method provided

successful solutions for all five cases. The success rate for optimization methods varied.

Example Set 2

Nine examples were solved by using FSD along with SUMT and IMSL optimizers. The normalized

results with respect to the FSD answers are depicted in table 2. 

Consider the 25-bar truss, referred to as BAR25 in table 2. It is subjected to two load conditions. Its 

25 areas are linked to obtain 8 independent variables. Since at optimum, 11 stress constraints are active, a

fully stressed state has been reached. The FSD, IMSL, and SUMT methods produced identical optimum

solutions for the example with different CPU times. Optimizers IMSL and SUMT were, respectively, 10 and

18.5 times more expensive than the FSD method. Solutions to the other eight problems followed the pattern of

the 25-bar truss, with minor variations.

DISCUSSION

For a truss, if a fully stressed state can be reached (i.e., the number of active constraints exceeds the

number of design variables), then such a design can be handled satisfactorily with the stress-ratio-based FSD

method. Optimization techniques for such problems can be computationally expensive and unnecessary.

In special circumstances a practical structural design may be associated with fewer active constraints

than design variables. Such a design is likely to represent an overdesign condition, which can be alleviated by

relaxing some of the nonactive constraints. If, however, there are fewer active constraints than design

variables, then the design is not fully stressed; here, nonlinear programming optimization methods can be 
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useful. For such problems the stress-ratio-based design can differ from the optimum design, especially when

weight densities for truss members are different.

When the fully stressed design is extended to include displacement constraints, it is called a fully

utilized design (FUD). The FUD, which can produce overdesign conditions, has been modified to obtain a

modified fully utilized design method that produces a satisfactory design for stress and displacement

constraints.10,11 The FUD method has been extended in Ref. 12 to nontruss-type structures for frequency

constraints.

The authors recognize the importance of nonlinear mathematical programming technique-based

structural design optimization.3 There are, however, design situations wherein simpler design methods such as

the fully stressed design method can produce acceptable practical designs. Such situations can be identified

when the number of active constraints equals or exceeds the number of design variables.

CONCLUSIONS

A fully stressed design is optimum when a full stress state can be achieved. At optimum, when the

number of active constraints equals or exceeds the number of design variables, then such a design becomes a

fully stressed design. Such a design can be obtained through a stress-ratio algorithm or by solving the

constraints without any consideration to the weight function. The stress-ratio algorithm can produce a fully

stressed design in a small fraction of the calculation time required by the design optimization methods. The

fully stressed design method may have the potential for extension to nontruss-type structures and nonstress

constraints. Design optimzation techniques may have to be used when the number of active constraints is

fewer than the number of design variables.
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Table 1.—Optimum Designs of Three-Bar Truss With Different Materials

[Number of active constraints exceed number of design variables.]

Method Cost
coefficients

Member areas Active
constraints

Optimum
weight, lb

FSD 0.1
3
6

16
1

0.1
6

12
13

200

    0.1
    8
  18
  25
300

3.30

  ª

3.99

  ª

3.32

  ª

g1,g3,g5, g6

  ª

1.33×102

7.53×103
1.60×104
2.43×104
2.20×105

SUMT 0.1
3
6

16
1

0.1
6

12
13
200

 0.1
    8
  18
  25
300

  3.291
  3.299
  3.299
  3.298
67.068

3.986
3.998
3.997
3.998
9.111

3.323
3.

299
3.

298

g1,g3,g5, g6

  ª

1.33×102

7.53×103

1.59×104

2.43×104

1.92×105

ISML 0.1
3
6

16
1

0.1
6

12
13

200

0.1
    8
  18
  25
 300

1.000
3.299

  ª

1.000
4.000

  ª

1.000
3.299

  ª

(a)
g1,g3,g5,g6

  ª

3.83×101

7.53×103
1.60×104
2.43×104
2.20×105

OPTM1 0.1
3
6

16
1

0.1
6

12
13

200

0.1
    8
  18
  25
 300

3.313
3.309
3.309
3.308
3.300

3.971
3.963
3.962
3.961
3.967

3.323
3.3
34
3.3
35

g1,g3,g5,g6

  ª

1.33×102

7.55×103
1.60×104
2.44×104
2.21×105

SQP 0.1
3
6

16
1

0.1
6

12
13

200

0.1
    8
  18
  25
300

2.335
2.334
2.334
2.335
2.335

2.503

  ª

2.505

  ª

(a)

  ª

9.35×101

5.32×103

1.14×104

1.74×104

1.57×105

OPTM2 0.1
3
6

16
1

0.1
6

12
13

200

0.1
    8
  18
  25
 300

3.199
3.501
3.635
3.657
3.684

2.556
2.402
2.353
2.316
2.336

5.102
4.682
4.563
4.467
4.512

g1,g5

(a )
g6
g6

g6

1.42×102

8.22×103
1.75×104
2.71×104
2.39×105
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Table 2.—Performance of Fully Stressed Design Versus Optimization Methods

Problem Load
condition

Independent
design

variables

Design
method

Normalized
weight

Number of
active
stress

constraints

Number of
active side
constraints

Indexall Indexstress Normalized
CPU time

BAR3 1 3 FSD
IMSL
SUMT

1.000
1.000
1.000

2
2
2

1
1
1

1.0
1.0
1.0

0.600
  .600
  .600

1.000
1.596
6.263

BAR5 2 5 FSD
IMSL
SUMT

1.000
1.000
1.000

7
7
8

0
0
0

1.4
1.4
1.6

1.400
1.400
1.600

1.000
   .527
1.288

BAR10 1 10 FSD
IMSL
SUMT

1.000
1.000
1.001

6
6
6

4
4
4

1.0
1.0
1.0

0.600
  .600
  .600

1.000
1.362
2.859

BAR25 2 8 FSD
IMSL
SUMT

1.000
1.000
1.001

11
11
11

3
3
3

1.75
1.75
1.75

1.375
1.375
1.375

1.000
8.688
14.213

DOME 1 12 FSD
IMSL
SUMT

1.000
  .983
  .984

188
192
192

5
5
4

16.08
16.42
16.33

15.667
16.000
16.000

1.000
  .743
  .740

RING_A 3 25 FSD
IMSL
SUMT

1.000
  .999
1.000

40
38
38

0
0
0

1.60
1.52
1.52

1.600
1.520
1.520

  1.000
  5.476
13.101

RING_B 1 60 FSD
IMSL
SUMT

1.000
1.000
1.003

52
52
52

16
16
8

   1.133
    1.133

1.0

0.867
  .867
  .867

1.000
2.882
5.569

TOWER_A 1 252 FSD
IMSL
SUMT

1.000
.999
1.000

117
117
117

135
131
139

1.0
      .984
    1.016

0.464
  .520
  .551

  1.000
57.249
81.442

TOWER_B 2 252 FSD
IMSL
SUMT

1.000
1.000
1.000

165
165
165

97
98
99

1.040
1.044
1.048

0.655
  .655
  .655

  1.000
48.031
59.557
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Figure 1.—The three-bar truss.

Load
condition

Node Px Py

Load components, kips

I 1 70.0   0.0

II 1 –35.0 –95.0

(a) The structure and loads.

x2

x1

x2

x3

g3 = 0

g5 = 0g6 = 0
g1 = 0

x3

x1

(b) The constraint space.

Px

Py
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